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Abstract

A common hurdle in category learning research is determining the ease
of learning a particular item or category. For example, when exploring
different training policies it is desirable to know which items or categories
are most difficult. Unfortunately, existing methods for determining ease-
of-learning are costly for real-world stimulus sets. This work introduces a
novel approach for computing ease-of-learning, which we refer to as ease
values, by determining an embedding of the domain items and using simple
category learning models to predict human performance. Instead of using
behavioral data from human training experiments, our approach uses hu-
man similarity judgments to fit the free parameters of a radial basis function
network, which serves as a simple category learning model. Results from
two validation experiments demonstrate the efficacy of the approach and
the superiority of a simple exemplar-based model over two alternative mod-
els. There are three advantages of the proposed approach. First, collecting
similarity judgments is relatively cheap compared to hiring experts or con-
ducting training experiments. Second, the approach is designed to work for
arbitrary, real-world, visual domains. Third, the approach is relatively for-
giving if ease values must be determined for a new expanded set of stimuli.

Visual categorization is a critical skill in many professions, including radiology,
dermatology and satellite imagery analysis. The economic importance of visual
categorization has motivated substantial research aimed at reducing the cost of
training visual experts. One approach for improving training is to predict where
learners are likely to make errors and adjust the training protocol appropriately.
For example, a training protocol could introduce easy stimuli first (e.g., Hornsby
& Love, 2014; McLaren & Suret, 2000; Roads, Xu, Robinson, & Tanaka, 2018).
Accurate assessment of a learner’s knowledge also requires knowing something
about stimulus difficulty: if an assessment is composed solely of easy items, it
will be challenging to distinguish between trained and untrained individuals. In
this work, the relative ease of learning a particular exemplar is referred to as
the exemplar ease value (EEV). The average EEV of all exemplars in a category
is referred to as the category ease value (CEV). The objective of this work is
to provide a cost-effective method for predicting EEVs and CEVs, generically
referred to as EVs.

A variety of methods have been proposed for estimating EVs. In the machine
learning literature, the likelihood of classification error is related to the distance
between a stimulus and the category boundary. For example, in the case of learn-
ing a linear (hyperplane) separator, examples near the boundary require more
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precise specification of the separator, and are therefore less likely to be classi-
fied correctly given limited training data. Machine learning approaches rely on
a known representation in order to compute distance to the category boundary.
In the human literature, analogous experiments have been done using synthetic
stimuli whose representations are known in advance and whose distance from the
category boundary can be determined (e.g., Spiering & Ashby, 2008). When a
stimulus representation is unknown–as is typically the case when using real-world
stimuli–the human literature employs three strategies. First, the distance from
a category boundary can be empirically determined by collecting error statistics
from humans (novices or experts) during the categorization task. The second ap-
proach is to norm stimuli to a given concept. For example, Salmon, McMullen,
and Filliter (2010) collected ratings for a set of images in which participants
rated each stimulus on its ”graspability”. These norms can then been used by
other researchers to create arbitrary category boundaries (Khan, Mutlu, & Zhu,
2011; Lindsey, Mozer, Huggins, & Pashler, 2013). Third, expert-based norms can
be obtained by hiring experts to rate the difficulty of each stimulus (e.g., Evered,
Walker, Watt, & Perham, 2014). However, there are two problems associated with
the existing approaches. First, it is costly to collect error statistics (via training
experiments) or hire experts. Second, even when a representation is known, ease
of learning may depend on factors other than distance to the category boundary.

The focus of our work is on leveraging human similarity judgments to reduce
the overall burden of predicting EVs. We explore three predictive models. The
first two models use human similarity judgments to determine a latent embedding
(psychological representation) of the stimuli and then characterize human learning
in terms of this embedding. One model is based on exemplars, the other on
prototypes; both are variants of a radial basis function network. The third model
is neutral to psychological theory and merely counts the frequency of different
types of similarity judgments in order to determine EVs. Each model is evaluated
by comparing the predicted EVs to empirically-derived EVs.

1 A cost-e�ective method for estimating ease

values

Theories of human category learning provide an alternative approach for esti-
mating EVs. If a model is capable of predicting the likelihood that a particu-
lar stimulus will be categorized correctly (e.g., Kruschke, 1992; Love, Medin, &
Gureckis, 2004; Nosofsky, 1986), then the model’s predictions can be used to es-
timate EVs. For example, assuming the appropriate free parameters are already
known, a category learning model could be used as a surrogate subject to col-
lect error statistics. Alternatively, a category learning model that has successfully
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mastered a task could be treated as a surrogate expert and used to estimate expert
ratings.

The predictive power of a category learning model comes at a cost. Nearly
every human category learning model relies on behavioral data to tune the model’s
free parameters. In a typical setting, category learning models are trained using
behavioral data is collected from a human training experiment. For the reasons
already discussed, we would like to avoid the costs associated with running a
training experiment.

As an alternative, we propose an approach that fits a model’s free parameters
using human similarity judgments. Human simialrity judgments are less time-
consuming to collect than running training experiments. We consider a class
of simple category learning models based on Radial Basis Function Networks
(RBFN). The proposed approach leverages the fact that the activations of an
RBFN are modulated by free parameters that can be learned from human sim-
ilarity judgments or fixed based on psychological theory. In the following three
sections, we outline a simple class of RBFNs, detail how the free parameters are
inferred, and describe two specific RBFN implementations.

1.1 RBFN category learning model

At its simplest, a RBFN consists of three layers: an input layer, a hidden layer,
and an output layer. A number of free parameters govern how activation propa-
gates through the network. These free parameters belong to one of three network
components: the stimulus representation, the psychological similarity kernel, and
the association weight matrix. These three components are implemented by com-
monly used category learning models, such as the Generalized Context Model
(Nosofsky, 1986) and ALCOVE (Kruschke, 1992).

A common method of representing stimuli is to treat each exemplar as a point
in a multidimensional feature space. While there are an infinite number of po-
tential visual and non-visual features that could be used, we assume that we can
identify the subset of features that are most salient and relevant for the catego-
rization task. The stimulus representation is denoted by Z, where zi indicates
the D-dimensional feature vector of the ith stimulus. The input layer activations
encode the query stimulus, x = zquery.

The similarity kernel s (z; z0) specifies how similarity between two stimuli (z
and z0) decays as a function of distance in feature space. The form of the similarity
kernel is constrained by existing psychological theory. Following Roads and Mozer
(2017), we integrate various psychological models (Jones, Love, & Maddox, 2006;
Jones, Maddox, & Love, 2006; Nosofsky, 1986; Shepard, 1987) into a general form
to obtain:

s (z; z0) = exp
�
�� kz� z0k��;w

�
+ 
; (1)
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where �, �, � , and 
 control the gradient of generalization. The norm kz� z0k�;w
denotes the weighted Minkowski distance:

kz� z0k�;w =

 
DX
j=1

wj
��zj � z0

j

���! 1
�

where wj � 0 and
DX
j=1

wj = D:

The parameter � controls the type of distance (e.g., � = 2 yields Euclidean dis-
tance) and D indicates the dimensionality of the embedding. The weights w cor-
respond to attention weights and allow the similarity kernel to model differences
in how individuals or groups attend to different dimensions in the psychological
embedding. The weights sum to D so that when all the weights are equal, i.e.,
wj = 1, we recover the standard (unweighted) Minkowski distance. While the
remainder of this work assumes this similarity kernel, other differentiable similar-
ity kernels could be substituted without loss of generality. For convenience, the
parameters �, �, � , and 
 are denoted by the set variable �.

The activation of the ith hidden unit h;i is determined by the similarity kernel
(Equation 1),

hi = s (x; zi) : (2)

The vector zi specifies the location of a particular basis function. An RBFN
network typically has multiple basis functions. The basis function locations can
be determined in a number of ways, which are discussed shortly.

The hidden layer is connected to the output layer via a fully connected asso-
ciation weight matrix W . The output layer has the same number of units as the
number of categories in the categorization task. A normalizing softmax operation
is applied to the raw output activations to create output probabilities,

y = softmax (hW ) : (3)

The EV of the query stimulus is the probability that the query is correctly cate-
gorized, i.e., the output probability of the query’s category membership.

1.2 Joint inference of a psychological embedding and sim-
ilarity kernel

In a typical category learning research paradigm, the stimulus representation Z is
determined independently of the category learning model. For example, one could
use a set of hand-coded features, low-level computer vision features, or features
from pre-trained deep neural network to determine the stimulus representation.
In this paradigm, the stimulus representation is then treated as fixed, and the
remaining free parameters are fit using human training data.
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Figure 1: Sample displays shown to subjects. The center image is the query
image while the surrounding images are the reference images. (A) Initially no
reference examples are selected. (B) After participants make their selection, the
two selected references are highlighted.

In contrast, the proposed approach determines both the stimulus representa-
tion and the parameters of the similarity kernel at the same time, without using
human training data. This is achieved by applying an embedding algorithm to
human similarity judgments in order to jointly infer the parameters of a similarity
kernel and stimulus representation (Roads et al., 2018). While many algorithms
exist for determining a stimulus representation, such as metric multi-dimensional
scaling, non-metric multi-dimensional scaling, and t-distributed stochastic triplet
embedding (Van Der Maaten & Weinberger, 2012), our approach leverages psy-
chological theory to constrain the possible solutions. We refer to the inferred
stimulus representation and similarity kernel as a psychological embedding. The
procedure for collecting human similarity judgments and the mechanisms of the
embedding algorithm are summarized below.

The first step to inferring a psychological embedding, is to collect human
similarity judgments for the set of stimuli. Inspired by approaches used in the
computer vision community (e.g., Wah et al., 2014), human similarity judgments
are collected by having novice participants view displays composed of 9 randomly
selected images arranged in a 3-by-3 grid (Figure 1). Each display is composed
of a query image (center image) and eight reference images (surrounding images).
Participants are asked to select the two reference images most similar to the query
image. When participants make their selection, they also indicate which reference
is most similar and second most similar. The ith judged display is denoted using
a vector Di = (qi; ai; bi; ci; di; ei; fi; gi; hi), where qi is a scalar indicating the query
image and ai-hi are scalars indicating the reference images. In this arrangement, ai
and bi represent the most similar and second most similar references respectively.
For convenience, Ri indicates the set of reference images of Di. The set of all
judged displays is indicated by D.

Next, the set of all judged displays D is used to jointly infer a stimulus repre-
sentation and similarity kernel. Given a set of observations, the likelihood of the
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data given the model parameters is:

L =
Y
i

p (DijZ;�) : (4)

In the case where participants select and rank two reference images, the likelihood
of a single judged display is:

p
�
D(8r2)
i jZ;�

�
= p (aijZ;�) p (bijai;Z;�) : (5)

The superscript 8r2 on Di indicates that participants select and rank two images
from eight possible reference images.

Given a similarity kernel, the likelihood of subject selections are modeled in
the same spirit as Luce’s ratio of strengths formulation (Luce, 1959) where the
probability of selecting a given reference is proportional to the similarity between
the query and that reference:

p
�
D(8r2)
i jZ;�

�
=

s (zqi ; zai)P
r2Ri

s (zqi ; zr)

s (zqi ; zbi)P
r2Ri¬ai

s (zqi ; zr)
: (6)

where s (zi; zj) is the similarity kernel defined in Equation 1. During inference
of the psychological embedding we assume a single set of attention weights and
therefore set all attention weights to one.

In the case where participants only select one image from eight possible refer-
ence images, the likelihood of a single display is given by:

p
�
D(8r1)
i jZ;�

�
=

s (zqi ; zai)P
r2Ri

s (zqi ; zr)
: (7)

If the observed data includes data from multiple display configurations, the likeli-
hood for each display configuration can be multiplied together to give a combined
likelihood. For example, if some displays had participants select and rank two
references from eight choices while other displays had participants select one ref-
erence from eight choices the combined likelihood is:

L =
Y
i

p
�
D(8c1)
i jZ;�

�Y
j

p
�
D(8c2)
j jZ;�

�
: (8)

After maximizing the log-likelihood using gradient decent, we obtain a stimulus
representation and a corresponding similarity kernel that models human-perceived
similarity.
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1.3 Candidate RBFN implementations

After a psychological embedding has been inferred, an RBFN model is missing
three pieces: the attention weights, the basis function locations and the association
weight matrix. Existing exemplar and prototype models provide guidance on
setting these parameters (e.g., Kruschke, 1992; Minda & Smith, 2002; Nosofsky,
1986; Smith & Minda, 1998). Each variant has different implications for how the
basis function locations and association weight matrix are determined.

An exemplar model takes a fine-grained approach and places a basis function at
the embedding location of each exemplar. The association weight matrix is fixed
by assuming that each hidden until is only connected to the output unit that
corresponds to its category. This version closely resembles Generalized Context
Model (Nosofsky, 1986) except that there is no softmax free parameter that adjusts
the determinism of human responses.

A prototype model takes a coarser approach and locates a basis function at
the centroid of all exemplars belonging to a given category. In other words, a
single basis function is used to represent each category. In a prototype model, we
assume that the association weight matrix is the identity matrix that connects
each category basis function to its appropriate output unit. The prototype im-
plementation requires a bit more care to set up properly. Since an embedding
is inferred on individual stimuli and the prototype basis function represents a
category average, the parameters of the similarity kernel must be appropriately
constrained and adjusted. First, the embedding algorithm is constrained to infer
solutions where � = 2, � = 2, and 
 = 0. Second, one multivariate Gaussian is
fit for each category. The fitted Gaussians are then used as the corresponding
basis function for each category. Since the fitted Gaussians are not constrained
to be spherical, the basis functions are not radial basis functions. However, the
additional flexibility was allowed to give the prototype model the best chance at
making good predictions.

Following the approach of Nosofsky (1986), the attention weights w are set
such that the RBFN model minimizes categorization error across all possible query
stimuli. The reader may be wondering why the attention weights that were fixed
during inference are now being altered. The embedding algorithm is blind to
category membership and infers a category-agnostic representation. It is assumed
that an expert would adjust their attention weights to maximize categorization
performance given a set of category labels.

Before computing EVs, we must decide how much knowledge a given model
posseses. If we use all of the stimuli to create basis functions, an exemplar model
would predict that all stimuli are easy to categorize since the distance between
itself and its corresponding basis function is zero. To prevent this uninteresting
behavior, we employ a leave-one-out approach to compute EVs. For convenience,
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let us denote the set of all stimuli less the ith stimulus as I:i. To compute the
EV of ith stimulus, we instantiate an RBFN using the set I:i to determine the
locations of the basis functions. This design amounts to assuming a categorization
model that has complete knowledge of all stimuli except the ith stimulus. Alter-
natively, a subset of the stimuli could be used, which would correspond to a model
with only partial knowledge of the domain. However, we are primarily interested
in computing EVs that are most likely to mimic ratings given by experts.

1.4 An alternative count based model

Instead of using a model constrained psychological theory, it is possible to employ
a model that removes theory all together. In this approach, instead of inferring
a psychological embedding from human similarity judgments, the similarity judg-
ments are used to directly compute EVs. Each judged display tells us how often
a given exemplar was judged to be similar to an exemplar of the same category
and an exemplar of a different category. For example, if a participant participant
sees a query stimulus belonging to category j and selects two references that also
belong to category j, this provides two votes that the query stimulus is easy. If a
participant sees another query stimulus belonging to category j, but selects two
references that belong to category j and k respectively, this provides one vote
that the query stimulus is easy. By looping over all judged displays, a simple
count matrix can be assembled that tracks how often a given exemplar is judged
to be more similar to a reference of the same category versus a reference of a
different category. After looping through all judged displays, the count matrix
can be normalized such that each row sums to one. Each row in the normalized
count matrix gives the probability that a particular exemplar will be judged to
more similar to a reference of the same category versus a reference of a different
category. These probabilities can be used to estimate EV. Although simple, this
count-based model serves as an important control that highlights the value, if any,
of using a model that leverages an inferred psychological embedding.

2 Experiments

The above models encompass three intuitive methods for predicting difficulty. A
good test of the proposed approach is to compare the predicted EVs to empiri-
cally derived EVs. Using two different human training experiments, we compute
empirical EVs and compare them to the EVs predicted by three different models:
an exemplar-, prototype-, and count-based model. The comparison will determine
if the general approach is valuable and which model makes the most accurate pre-
dictions. For each experiment, we provide a brief description of the experimental
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design followed by a comparison of the predicted and observed EVs.

2.1 Validation Experiment 1

The goal of the first validation experiment is to predict the EVs associated with
categorizing a set of 156 bird images representing 12 different categories. Empir-
ical EVs are derived from Experiment 1 of a previously conducted study (Roads
& Mozer, in submissiona). The exemplar-, prototype-, and count-based models
use similarity judgments that were previously collected for a similarity judgment
database (Roads & Mozer, submitted). An abbreviated description of the human
training study is included, with an emphasis given to details pertinent to the
current work.

2.1.1 Methods

Participants Two sets of participants were used in this experiment. A psy-
chological embedding was constructed from similarity judgments collected from
232 participants. Human training data was collected from 160 participants. All
participants were recruited from Amazon Mechanical Turk (AMT) and paid at at
rate of approximately $8.00 per hour for their time and effort.

Materials A set of 156 bird images, representing 12 different species (Figure 2A-
C), were selected from the CUB-200 dataset (Wah, Branson, Welinder, Perona,
& Belongie, 2011). For each species, 13 exemplars were hand picked by the first
author. Exemplars were selected to make sure that the resolution of the image was
sufficiently high, the bird was clearly visible in the image, and the bird exhibited
the visual features characteristic of the species. To ensure a sufficiently challenging
and representative task, species were selected such that there were three groups
of four visually similar species.

Procedure Empirical EVs and predicted EVs were derived using two distinct
procedures. The procedure for deriving empirical EVs from training data is de-
scribed first. The procedure for computing EVs from the candidate models is
described second.

During the training experiment, participants completed trials at their own pace
for approximately one hour. At the beginning of the experiment the set of stimuli
was randomly partitioned into a practice and assessment set. The practice set was
composed of seven exemplars from each category, while the assessment set was
composed of the remaining six exemplars from each category. The practice and
assessment set were further partitioned into mini-sets of 12 exemplars containing
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(A) Orioles

(B) Warblers

(C) Sparrows

Hooded Oriole

Hooded Warbler

Chipping Sparrow

Blue Grosbeak

Bobolink

Kentucky Warbler

Tree Sparrow

Indigo Bunting

Yellow-headed Blackbird

Magnolia Warbler

Fox Sparrow

Lazuli Bunting

Scott Oriole

Wilson Warbler

Harris Sparrow

Painted Bunting(D) Cardinals

Figure 2: Example stimuli of the different bird species used in this work. Each
row contains four similar bird species, each of which belong to the same or similar
taxonomic family. Validation Experiment 1 used the 12 bird species in rows A-C.
Validation Experiment 2 used all 16 bird species.

one exemplar from each category. Each mini-set was used to create a mini-block
composed of 12 trials.

At the highest level, the experiment was composed of three parts. Each part
consisted of a practice phase followed by an assessment phase. Each practice phase
took a fixed time of 15 minutes. During a practice phase, trials were arranged
into mini-blocks consisting of exemplars from the practice set. If a participant
made it through all practice mini-blocks, the sequence of practice mini-blocks was
repeated. Each assessment phase was composed of a fixed number of trials. Dur-
ing each assessment phase, two mini-blocks (24 trials) were shown to participants.
Once the exemplars were shown during the assessment phase, they were added to
the practice set for use in the next practice phase. Critically, all trials presented
during the assessment phase used unseen stimuli. On all trials (both practice and
assessment), a query stimulus was presented along with a blank response box.
Participants typed the name of the category corresponding to the query stimu-
lus. After submitting their response, participants received corrective feedback.
Participants were not scored based on capitalization and answers within an edit
distance of two were marked as correct.

In addition to this basic setup, some participants were assigned to conditions
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